Unaltered Striatal Dopamine Release Levels in Young Parkin Knockout, Pink1 Knockout, DJ-1 Knockout and LRRK2 R1441G Transgenic Mice

نویسندگان

  • Gonzalo Sanchez
  • Rafael K. Varaschin
  • Hansruedi Büeler
  • Paul C. Marcogliese
  • David S. Park
  • Louis-Eric Trudeau
چکیده

Parkinson's disease (PD) is one of the most prevalent neurodegenerative brain diseases; it is accompanied by extensive loss of dopamine (DA) neurons of the substantia nigra that project to the putamen, leading to impaired motor functions. Several genes have been associated with hereditary forms of the disease and transgenic mice have been developed by a number of groups to produce animal models of PD and to explore the basic functions of these genes. Surprisingly, most of the various mouse lines generated such as Parkin KO, Pink1 KO, DJ-1 KO and LRRK2 transgenic have been reported to lack degeneration of nigral DA neuron, one of the hallmarks of PD. However, modest impairments of motor behavior have been reported, suggesting the possibility that the models recapitulate at least some of the early stages of PD, including early dysfunction of DA axon terminals. To further evaluate this possibility, here we provide for the first time a systematic comparison of DA release in four different mouse lines, examined at a young age range, prior to potential age-dependent compensations. Using fast scan cyclic voltammetry in striatal sections prepared from young, 6-8 weeks old mice, we examined sub-second DA overflow evoked by single pulses and action potential trains. Unexpectedly, none of the models displayed any dysfunction of DA overflow or reuptake. These results, compatible with the lack of DA neuron loss in these models, suggest that molecular dysfunctions caused by the absence or mutation of these individual genes are not sufficient to perturb the function and survival of mouse DA neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SWATH-MS proteome profiling data comparison of DJ-1, Parkin, and PINK1 knockout rat striatal mitochondria

This article reports changes in the striatal non-synaptic mitochondrial proteome of DJ-1, Parkin, and PINK1 knockout (KO) rats at 3 months of age. DJ-1, Parkin, and PINK1 mutations cause autosomal-recessive parkinsonism. It is thought that loss of function of these proteins contributes to the onset and pathogenesis of Parkinson׳s disease (PD). As DJ-1, Parkin, and PINK1 have functions in the re...

متن کامل

Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease

Recessively inherited loss-of-function mutations in the PTEN-induced putative kinase 1(Pink1), DJ-1 (Park7) and Parkin (Park2) genes are linked to familial cases of early-onset Parkinson's disease (PD). As part of its strategy to provide more tools for the research community, The Michael J. Fox Foundation for Parkinson's Research (MJFF) funded the generation of novel rat models with targeted di...

متن کامل

Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons.

Mitochondrial dysfunction is implicated in aging and degenerative disorders such as Parkinson's disease (PD). Continuous fission and fusion of mitochondria shapes their morphology and is essential to maintain oxidative phosphorylation. Loss-of-function mutations in PTEN-induced kinase1 (PINK1) or Parkin cause a recessive form of PD and have been linked to altered regulation of mitochondrial dyn...

متن کامل

H2-EB1 Molecule Alleviates Allergic Rhinitis Symptoms of H2-Eb1 Knockout Mice

Background:   H2-EB1 molecule which is the homolog of Human HLA-DRB1 is proposed to be associated with allergic rhinitis (AR). Construction of   H2-Eb1 knockout animal models provides a tool to elucidate the role of H2-EB1 and AR pathogenesis. Objective:   To establish the H2-Eb1 knockout model and investigate the H2-EB1 functions in   H2-Eb1 knockout mice as a model of AR. Methods: The Cre/Lox...

متن کامل

Gene and MicroRNA Transcriptome Analysis of Parkinson's Related LRRK2 Mouse Models

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of genetic Parkinson's disease (PD). The biological function of LRRK2 and how mutations lead to disease remain poorly defined. It has been proposed that LRRK2 could function in gene transcription regulation; however, this issue remains controversial. Here, we investigated in parallel gene and microRNA (miRNA) transcri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014